Stereocontrol of stereogenic centres para on a benzene ring using the $S_{E} 2^{\prime \prime}$ reaction of a pentadienylsilane

Ian Fleming * and Colin P. Leslie
Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK

The pentadienylsilane 9 and the dimethyl acetal 2 of isobutyraldehyde react with high (80:20) anti stereospecificity to give largely the diene 10a, which was converted into the para-disubstituted benzene 11a, having 1,6 -related stereogenic centres.

We have shown in the preceding paper, ${ }^{1}$ that chiral (Z, E) pentadienylsilanes 1 react with electrophiles in $\mathrm{S}_{\mathrm{E}} 2^{\prime \prime}$ reactions, moving stereochemical information five atoms along a carbon chain, with surprisingly high levels (up to 90:10) of stereocontrol in the anti sense for both diastereoisomeric products 3 and 4 (Scheme 1).

Scheme 1 Reagents: $\mathrm{i}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

Most of our work in this area, recorded in the preceding paper, has been concerned with trying to find out whether the stereoselectivity is steric or electronic in origin. Our conclusion is that it is mainly steric when the electrophile is large, but large in this context means such electrophiles as isobutyraldehyde or its acetal 2 in the presence of a Lewis acid. We actually had to work quite hard to find an electrophile, a deuteron or a tethered formaldehyde fragment, that did not show high stereoselectivity. We now report that the high levels of stereospecificity in these $\mathrm{S}_{\mathrm{E}} 2^{\prime \prime}$ reactions can be used to set up stereogenic centres with a 1,6 relationship, and that it is particularly easy to set them up para across a benzene ring, an arrangement that is particularly difficult to achieve unless each centre is set up independently with absolute stereocontrol. Separately setting up each centre with absolute control is not suited to the synthesis of racemic material, which is what we are doing here, but obviously specifically synthesising racemic material is not usually important. Roush has recently reported an elegant and indeed better solution to the problem of setting up stereocentres 1,6 related across a butadiene. ${ }^{2}$

Results and discussion

Following our earlier work, ${ }^{3}$ we added successively our phenyldimethylsilyl-cuprate reagent and a proton to the α, β unsaturated ester $\mathbf{5}$ to give the ester $\mathbf{6}$ with selectivity (91:9) in favour of the syn relationship between the silyl and the methyl group, as usual in protonations of β-silyl enolates (Scheme 2). ${ }^{4}$ We then reduced the ester group and protected the alcohol as its benzyl ether. The benzyl triflate method ${ }^{5}$ was superior to the acid-catalysed method using benzyl trichloroacetimidate, ${ }^{6}$ because it avoided the easy formation of a cyclic acetal, and base-catalysed methods using benzyl halides give displacement
of the phenyl group from the silicon. ${ }^{7}$ We oxidised the aldehyde derived from the acetal group into the corresponding carboxylic acid and esterified it to give the ester 7 (Scheme 2).

Scheme 2 Reagents: i, $\left(\mathrm{PhMe}_{2} \mathrm{Si}_{2} \mathrm{CuCNLi}_{2}, \mathrm{THF},-23^{\circ} \mathrm{C}, 2 \mathrm{~h}\right.$ and $-23^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iv, BnOTf, 2,6- $\mathrm{Bu}^{t}{ }_{2} \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; v, Amberlyst-15, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Me}_{2} \mathrm{CO}$, room temp., 24 h ; vi, $\mathrm{NaClO}_{2}, \mathrm{KH}_{2} \mathrm{PO}_{4}$, $\mathrm{Bu}^{t} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, 2-methylbut-2-ene, room temp., 1 h ; vii, $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2^{-}}$ $\mathrm{SiMe}_{3}, \mathrm{DCC}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow$ room temp. 1 h

Having established a relationship between the adjacent centres, numbered $\mathrm{C}-1$ and $\mathrm{C}-2$, on one side of the silyl group, we then used our standard sequence ${ }^{1.8}$ for pentadienylsilane synthesis, so that we could move stereochemical information five atoms in the other direction. We carried out an aldol reaction between the ester 7 and trans-but-2-enal to give as the major product, a β-hydroxy ester with the usual stereochemistry ${ }^{8}$ between C-3 and C-4. Decarboxylative elimination of the corresponding β-hydroxy acid $\mathbf{8}$ gave largely the (Z, E)pentadienylsilane 9 in a syn stereospecific reaction, and we removed the small amount of (E, E)-diene by Diels-Alder reaction with N-phenylmaleimide (Scheme 3).

Scheme 3 Reagents: i, LDA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, trans-but-2-enal, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$; iii, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$; iv, TBAF, THF, room temp., 3 h ; v, $\mathrm{PhSO}_{2} \mathrm{Cl}, \mathrm{Py}, 0^{\circ} \mathrm{C}, 24 \mathrm{~h}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h}$; vi, N-phenylmaleimide, toluene, $60^{\circ} \mathrm{C}, 72 \mathrm{~h}$

We then carried out the $\mathrm{S}_{\mathrm{E}} 2^{\prime \prime}$ reaction on the pentadienylsilane 9 with the acetal 2 of isobutyraldehyde to give a mixture of inseparable diastereoisomeric ethers 10 (Scheme 4). By analogy

$10 a+10 b: 10 c+10 d=80: 20 \quad 98 \%$
Scheme 4 Reagents: i, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 5 \mathrm{~h},-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$
with earlier examples of this type of reaction, we can expect to have something like a $4: 1$ mixture of $\operatorname{syn}(10 a$ and 10b) and anti (10c and 10d) diastereoisomers with respect to the relationship between the atoms labelled C-6 and C-7. The ${ }^{1} \mathrm{H}$ NMR spectrum showed clearly signals from two of the four possible diastereoisomers, in a ratio of $80: 20$, which we assumed were the isomers differing in their relative stereochemistry at these centres. We can also expect to have a mixture with respect to the relationship between C-1 and C-6, with the products (10a and 10c) of an anti reaction significantly more abundant than the products ($\mathbf{1 0 b}$ and $\mathbf{1 0 d}$) of a syn reaction. There was no sign of any splitting of the NMR signals (${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$) from there being mixtures of diastereoisomers 10a and 10b, and 10c and 10d, which we assumed was because C-1 was too far away from C-6 to show any influence.

We converted the (E, E)-diene unit into a benzene ring, using 1 -nitro-2-phenylsulfonylethene as an acetylene equivalent. ${ }^{9}$ The aromatic product also showed two isomers in the ${ }^{1} \mathrm{H}$ NMR spectrum with no further splitting of the signals, and still no sign of any possibility of chromatographic separation. We therefore removed both ether groups, using trimethylsilyl chloride and sodium iodide, to give the mixture of diols, which were now separable into the pairs of isomers 11a +11 b and 11c + 11d, isomeric in their relationships between $\mathrm{C}-6$ and $\mathrm{C}-7$ (Scheme 5). If the stereochemistry has been transferred from C-2 to C-6 with 90% anti and 10% syn stereoselectivity, which is probably as good as we can hope for, the proportion of the products (11a:11b and 11c:11d) ought to be 83:17, given that the starting material 6 was actually a $91: 9$ mixture of diastereoisomers, which we had not separated, although in principle we could have by derivatisation. However, there was no sign, either chromatographically or in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, of the diastereoisomeric pairs which must still be present as a result of the presence of a stereogenic centre at C-1. Both pairs of diastereoisomers 11a $+\mathbf{1 1 b}$ and 11c + 11d gave the sharp signals typical of a single compound, although they could not have been other than mixtures.

To measure the degree of success with which we had controlled the relative stereochemistry between $\mathrm{C}-1$ and $\mathrm{C}-6$, we tied the two hydroxy groups of the mixture of major diastereoisomers 11a $+11 \mathbf{b}$ into a dilactone, hoping that a restricted range of conformations would increase the probability of differentiating the diastereoisomers spectroscopically. In the event, the mixture of dilactones 12a and 12b was formed in good yield using an adipic acid link, which we

i, ii, iii, iv

11a + 11b 34\% 11c + 11d 9\%
Scheme 5 Reagents: i, $\mathrm{PhSO}_{2} \mathrm{CH}=\mathrm{CHNO}_{2}$, toluene, $100^{\circ} \mathrm{C}, 10 \mathrm{~h}$; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux, 3 h ; iii, DDQ, benzene, room temp., 30 min; iv, TMSCI, NaI, MeCN, room temp., 12 h
attached in two stages, and two diastereoisomers were now clearly present in a ratio of $74: 26$ (Scheme 6).

Scheme 6 Reagents: i, $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SiMe}_{3}$, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{\circ}{ }^{\circ} \mathrm{C} \rightarrow$ room temp., 4 h ; ii, TBAF, THF, room temp., 4 h ; iii, DCC, DMAP, DMAP $\cdot \mathrm{HCl}, \mathrm{CHCl}_{3}$, reflux, 3 h

We assume here that the $\mathrm{S}_{\mathrm{E}} 2^{2 \prime}$ reaction is anti stereospecific, having proved that it was in all our earlier examples. Correcting for the starting material having been a mixture, this indicates that the reaction had taken place with 60% anti stereospecificity, and the stereogenic centres between C-1 and C-6 (and C-7, of course) had been substantially controlled, in spite of their distance apart. This was somewhat below what we might have expected from our earlier experience of the $\mathrm{S}_{\mathrm{E}} 2^{2 \prime}$ reaction, ${ }^{1}$ but an $80: 20$ ratio of attack on the diastereotopic faces of the double bond five atoms from the stereogenic centre is still high, and this remarkable level of 1,6 -stereocontrol was achieved entirely with open-chain reactions, with no help from the stereochemical effects in cyclic transition structures.

Experimental

(Z-1-Ethoxy-1-trimethylsilyloxy-2-methylbuta-1,3-diene and

 (E)-1-ethoxy-1-trimethylsilyloxy-2-methylbuta-1,3-dieneButyllithium ($1.45 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexanes; $113 \mathrm{~cm}^{3}, 164 \mathrm{mmol}$) was added dropwise with stirring to diisopropylamine (23.1
$\mathrm{cm}^{3}, 16.7 \mathrm{~g}, 165 \mathrm{mmol}$) and hexamethylphosphoramide (HMPA) ($28.7 \mathrm{~cm}^{3}, 29.6 \mathrm{~g}$) in dry tetrahydrofuran (THF) (400 cm^{3}) under argon at $-78^{\circ} \mathrm{C}$. After 30 min , ethyl trans-but-2enoate ($17.1 \mathrm{~g}, 150 \mathrm{mmol}$) in dry THF ($50 \mathrm{~cm}^{3}$) was added dropwise. The mixture was stirred for a further 10 min and quenched with methyl iodide ($10.3 \mathrm{~cm}^{3}, 23.4 \mathrm{~g}, 165 \mathrm{mmol}$) in dry THF $\left(20 \mathrm{~cm}^{3}\right)$. The solution was allowed to warm to $0^{\circ} \mathrm{C}$ over 50 min and then re-cooled to $-78^{\circ} \mathrm{C}$. A solution of LDA [prepared by addition of butyllithium $\left(1.45 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexanes; $113 \mathrm{~cm}^{3}, 164 \mathrm{mmol}$) to a stirred solution of diisopropylamine ($23.1 \mathrm{~cm}^{3}, 16.7 \mathrm{~g}, 165 \mathrm{mmol}$) in dry THF (200 cm^{3}) under argon at $-20^{\circ} \mathrm{C}$] was added dropwise over 20 min at $-78^{\circ} \mathrm{C}$. The mixture was stirred for a further 10 min and quenched with chlorotrimethylsilane $\left(24.5 \mathrm{~g}, 19.7 \mathrm{~cm}^{3}, 225\right.$ mmol). The solution was allowed to warm to room temperature, stirred for 1.5 h and the solvent evaporated under reduced pressure. Dry pentane ($500 \mathrm{~cm}^{3}$) was added to the residue, and the resulting mixture filtered to remove the precipitated HMPA-lithium chloride complex and evaporated under reduced pressure. The residue was fractionally distilled under reduced pressure (15 cm Vigreux, $45-46^{\circ} \mathrm{C}$ at 1.5 mmHg) to give an inseparable mixture of the silyl enol ethers (21.2 g , $70 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{1} 1655(\mathrm{C}=\mathrm{C})$ and 1250 and $845\left(\mathrm{SiMe}_{3}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major isomer: $6.79(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and 17.5 , $\dagger\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 4.90-4.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.82(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.7.1, \mathrm{CH}_{2} \mathrm{O}\right), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{C}), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right)$ and $0.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$; minor isomer: $6.63(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 17.4, $\mathrm{CH}=\mathrm{CH}_{2}$), $4.90-4.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.84(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.7.1, \mathrm{CH}_{2} \mathrm{O}\right), 1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{C}), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2}\right)$ and $0.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$.

Ethyl (E)-5,5-dimethoxy-2-methylpent-2-enoate 5 and ethyl 2-dimethoxymethyl-2-methylbut-3-enoate

Powdered anhydrous zinc bromide ($0.75 \mathrm{~g}, 3.4 \mathrm{mmol}$) was added with stirring to the silyl enol ethers ($16.0 \mathrm{~g}, 85.1 \mathrm{mmol}$) and trimethyl orthoformate ($20 \mathrm{~cm}^{3}, 19.5 \mathrm{~g}, 183 \mathrm{mmol}$) in dry dichloromethane ($200 \mathrm{~cm}^{3}$) under argon at room temperature. The suspension was stirred overnight and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, EtOAc-hexane, 5:95) to give the ester $5(8.38 \mathrm{~g}, 49 \%)$; $R_{f}($ EtOAc-hexane, $20: 80) 0.45 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.71(1 \mathrm{H}, \mathrm{tq}, J 7.2$ and $1.4, \mathrm{CH}=\mathrm{C}), 4.47$ $(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{CHOMe}), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{O}\right), 3.32(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 2.48\left(2 \mathrm{H}\right.$, ddd, $J 1.0,5.7$ and $\left.7.2, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.83(3$ $\mathrm{H}, \mathrm{q}, J 1.2, \mathrm{C}=\mathrm{CMe})$ and $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{OMe}$, 171.1028. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\quad M-\mathrm{OMe}$, 171.1021); and ethyl 2-dimethoxymethyl-2-methylbut-3-enoate $(1.9 \mathrm{~g}, 11 \%) ; R_{\mathrm{f}}($ EtOAc-hexane, $20: 80) 0.53 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1740(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.90(1 \mathrm{H}$, dd, $J 10.9$ and $\left.17.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{dd}, J 0.7$ and 10.8 , $\left.\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J 0.7\right.$ and $\left.17.5, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.45$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOMe}), 4.06\left(2 \mathrm{H}, \mathrm{dq}, J 2.1\right.$ and $\left.7.1, \mathrm{CH}_{2} \mathrm{O}\right), 3.40(6$ $\mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCC}=\mathrm{O})$ and $1.16(3 \mathrm{H}, \mathrm{t}, J 7.1$, $M e \mathrm{CH}_{2}$).

Ethyl (2RS,3RS)-5,5-dimethoxy-2-methyl-3-dimethyl(phenyl)silylpentanoate 6

Dimethyl(phenyl)silyllithium $\left(0.83 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 132 \mathrm{~cm}^{3}, 110\right.$ mmol) was added dropwise to a stirred suspension of copper(I) cyanide ($5.00 \mathrm{~g}, 55.2 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) under argon at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 15 min and then cooled to $-23^{\circ} \mathrm{C}$. The ester $5(8.38 \mathrm{~g}, 41.5 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise and the resulting mixture was stirred for 2 h at $-23^{\circ} \mathrm{C}$ and 30 min at $0^{\circ} \mathrm{C}$, quenched with saturated aqueous ammonium chloride ($100 \mathrm{~cm}^{3}$), filtered through Celite and extracted with ether $\ddagger\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The extract was

[^0]washed with saturated aqueous ammonium chloride (3×50 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexane, $5: 95-10: 90)$ to give the ester $(13.95 \mathrm{~g}, 99 \%)$ as a $91: 9$ mixture (determined by integration of the ${ }^{1} \mathrm{H}$ NMR signals of the C-2 methyl groups) with its $\mathrm{C}-2$ epimer; $R_{f}($ EtOAc-hexane, $20: 80)$ $0.62 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right), 1110(\mathrm{SiPh})$ and $830\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62-7.46(2 \mathrm{H}, \mathrm{m}, o-$ $\mathrm{SiPh}), 7.40-7.31(3 \mathrm{H}, \mathrm{m}, m$ - and p-SiPh), $4.26(1 \mathrm{H}, \mathrm{t}, J 5.7$, CHOMe), $4.02\left(2 \mathrm{H}, \mathrm{dq}, J 3.5\right.$ and $\left.7.1, \mathrm{CH}_{2} \mathrm{O}\right), 3.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OMe}_{\mathrm{A}}\right), 3.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}_{\mathrm{B}}\right), 2.70(1 \mathrm{H}, \mathrm{dq}, J 3.8$ and 7.1 , $\mathrm{CHMe}), 1.75-1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CSi}\right), 1.30-1.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSi})$, $1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2}\right.$), $1.15(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCC=O}), 0.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 175.8,139.1,134,128.9,127.7,104.6,60.1,53.5,52.4$, $40.2,31.2,25.2,16.3,14.2,-2.6$ and $-3.2 ; m / z 338\left(10 \%, \mathrm{M}^{+}\right)$, 323 (13, M - Me), 306 (11, M - MeOH), 291 (23, M - Me $\mathrm{MeOH}), 275$ (11, $\mathrm{M}-\mathrm{OMe}-\mathrm{MeOH}$), 263 [42, $\mathrm{M}-$ $\left.\mathrm{CH}(\mathrm{OMe})_{2}\right], 135,\left(95, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and $75\left[100, \mathrm{CH}(\mathrm{OMe})_{2}\right]$ (Found: $\mathrm{M}^{+}, 338.1904 . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 338.1913$). The minor diastereoisomer had distinctive signals at $\delta 4.26$ [1 $\left.\mathrm{H}, \mathrm{t}, J 5.7, \mathrm{C} H(\mathrm{OMe})_{2}\right], 4.07\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right), 3.18(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.12(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.63(1 \mathrm{H}, \mathrm{dq}, J 7.3$ and $2.6, \mathrm{C} H \mathrm{Me})$, $1.24\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH} M e)$ and $0.36\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$.

(2RS,3RS)-5,5-Dimethoxy-2-methyl-3-dimethyl(phenyl)silyl-pentan-1-ol

The ester 6 ($12.00 \mathrm{~g}, 35.5 \mathrm{mmol}$) in dry THF $\left(80 \mathrm{~cm}^{3}\right)$ was added dropwise with stirring to a suspension of lithium aluminium hydride ($1.30 \mathrm{~g}, 34.2 \mathrm{mmol}$) in dry THF $\left(80 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon. After stirring for 2 h , the mixture was quenched with saturated aqueous ammonium chloride ($10 \mathrm{~cm}^{3}$) and filtered through Celite, washing with pyridine-ether ($250 \mathrm{~cm}^{3}$, $0.5: 99.5$). The filtrate was washed with saturated aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$), dried (MgSO_{4}) and evaporated under reduced pressure. The residue was chromatographed ($\mathrm{SiO}_{2}, \mathrm{EtOAc}-$ hexane, $10: 90$) to give the alcohol $(10.12 \mathrm{~g}, 96 \%$); $R_{f}\left(\right.$ EtOAc-hexane, 20:80) 0.16; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3430(\mathrm{OH})$, $1250\left(\mathrm{SiMe}_{2}\right), 1120(\mathrm{SiPh})$ and $830\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.56-7.49(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}), 7.36-7.31(3 \mathrm{H}, \mathrm{m}, m$ - and p-SiPh), $4.21(1 \mathrm{H}, \mathrm{t}, J 5.8$, CHOMe), $3.41(1 \mathrm{H}$, dd, $J 6.6$ and $\left.10.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd}, J 5.9\right.$ and $\left.10.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right)$, $3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}_{\mathrm{A}}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}_{\mathrm{B}}\right), 1.85-1.75(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHMe}), 1.68\left(1 \mathrm{H}, \mathrm{dd}, J 5.9\right.$ and 14.6, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CSi}\right), 1.59$ ($1 \mathrm{H}, \mathrm{dd}, J 5.8$ and $\left.14.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CSi}\right), 1.20-1.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSi})$, $0.95(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and 0.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$) ; m/z $249\left(1 \%, \mathrm{M}^{+}-\mathrm{Me}-\mathrm{MeOH}\right), 135$ ($50, \mathrm{PhMe}_{2} \mathrm{Si}$) and $75\left[100, \mathrm{CH}(\mathrm{OMe})_{2}\right]$ (Found: $\mathrm{M}^{+}-\mathrm{Me}-$ $\mathrm{MeOH}, 249.1301 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{Me}-\mathrm{MeOH}$, 249.1310).

(3RS,4RS)-5-Benzyloxy-4-methyl-3-dimethyl(phenyl)silylpentanal dimethyl acetal

Benzyl alcohol ($4.18 \mathrm{~cm}^{3}, 4.36 \mathrm{~g}, 40.4 \mathrm{mmol}$) and 2,6-di-tertbutylpyridine ($9.2 \mathrm{~cm}^{3}, 7.83 \mathrm{~g}, 41 \mathrm{mmol}$) in dichloromethane ($60 \mathrm{~cm}^{3}$) were added dropwise with stirring to trifluoromethanesulfonic anhydride ($6.8 \mathrm{~cm}^{3}, 11.4 \mathrm{~g}, 40.4 \mathrm{mmol}$) in dichloromethane ($150 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon. The solution was stirred for 5 min and a solution of the alcohol (7.51 $\mathrm{g}, 25.4 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($14.8 \mathrm{~cm}^{3}, 12.67 \mathrm{~g}$, 66 mmol) in dichloromethane ($100 \mathrm{~cm}^{3}$) was added dropwise. The resulting solution was stirred for 30 min , allowed to warm to $-20^{\circ} \mathrm{C}$ and stirred for a further 30 min . The solution was quenched with pyridine $\left(8 \mathrm{~cm}^{3}\right)$, washed with water (3×100 cm^{3}), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexane, 5:95) to give the acetal ($8.66 \mathrm{~g}, 88 \%$); $R_{\mathrm{f}}($ EtOAc-hexane, $20: 80$) $0.62 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1250\left(\mathrm{SiMe}_{2}\right), 1120(\mathrm{SiPh})$ and 830 $\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.56-7.48(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}), 7.39-$
$7.28\left(8 \mathrm{H}, \mathrm{m}, m\right.$ - and p - SiPh and CPh), $\left.4.39(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})_{2}\right)$, $4.32(1 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{CHOMe}), 3.25-3.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CMe}\right), 3.22$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}_{\mathrm{A}}$), $3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}_{\mathrm{B}}\right.$), $2.14(1 \mathrm{H}, \mathrm{d}$ sextet, $J 2.8$ and 6.9, CHMe), $1.77-1.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CSi}\right), 1.34-1.27(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHSi}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 309\left(1 \%, \mathrm{M}^{+}-\mathrm{Ph}\right), 135$ ($100, \mathrm{SiMe}_{2} \mathrm{Ph}$), $107\left(15, \mathrm{PhCH}_{2} \mathrm{O}\right)$ and $91\left(65, \mathrm{PhCH}_{2}\right)$ (Found: C, 71.5; H, 8.9. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.5 ; \mathrm{H}$, 8.9%).

(3RS,4RS)-5-Benzyloxy-4-methyl-3-dimethyl(phenyl)silylpentanal

Amberlyst-15 (1.8 g) was added to the acetal $(10.67 \mathrm{~g}, 27.6$ $\mathrm{mmol})$ in water $\left(1.8 \mathrm{~cm}^{3}\right)$ and acetone ($150 \mathrm{~cm}^{3}$) at room temperature under argon. The mixture was stirred overnight, filtered and evaporated under reduced pressure to give the aldehyde ($9.38 \mathrm{~g}, 100 \%$); $R_{\mathrm{f}}(\mathrm{EtOAc}$-hexane, $20: 80) 0.62$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2715$ (aldehyde CH$), 1720(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right)$, $1110(\mathrm{SiPh})$ and $830\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.57(1 \mathrm{H}$, dd, $J 1.5$ and $2.6, \mathrm{CHO}$), 7.50-7.44 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}$), 7.37-7.26 ($8 \mathrm{H}, \mathrm{m}, m$ - and p-SiPh and CPh), $4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 3.21$ (1 H , dd, $J 6.3$ and $\left.9.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.16(1 \mathrm{H}$, dd, $J 6.4$ and 9.3 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.43\left(1 \mathrm{H}\right.$, ddd, $J 2.6,8.3$ and $\left.16.5, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right)$, 2.38 (1 H , ddd, $J 1.5,5.0$ and $16.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}$), 2.05-1.95 (1 $\mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.74(1 \mathrm{H}, \mathrm{dt}, J 8.2$ and $4.9, \mathrm{CHSi}), 0.95(3 \mathrm{H}, \mathrm{d}, J$ 6.9, CMe), $0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.31(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 325\left(19 \%, \mathrm{M}^{+}-\mathrm{Me}\right), 263(65, \mathrm{M}-\mathrm{Ph}), 249$ ($45, \mathrm{M}-\mathrm{PhCH}_{2}$), $135\left(100, \mathrm{SiMe}_{2} \mathrm{Ph}\right)$ and $91\left(90, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{Me}, 325.1625 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ requires $M-\mathrm{Me}$, 325.1624).

(3RS,4RS)-5-Benzyloxy-4-methyl-3-dimethyl(phenyl)silylpentanoic acid

Sodium chlorite ($4.0 \mathrm{~g}, 80 \%, 35.6 \mathrm{mmol}$) and potassium dihydrogen phosphate ($4.0 \mathrm{~g}, 29.4 \mathrm{mmol}$) in water ($100 \mathrm{~cm}^{3}$) were added dropwise with stirring to the aldehyde $(9.28 \mathrm{~g}, 27.3$ mmol) in tert-butyl alcohol ($200 \mathrm{~cm}^{3}$) and 2-methylbut-2ene ($50 \mathrm{~cm}^{3}$) at room temperature under argon. The mixture was stirred vigorously for 1 h , diluted with EtOAc (1500 cm^{3}), washed with brine ($3 \times 150 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (SiO_{2}, EtOAc-hexane, 20:80-50:50) to give the acid ($7.15 \mathrm{~g}, 74 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3400-2500$ (acid $\mathrm{OH}), 1705(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right), 1110(\mathrm{SiPh})$ and $835\left(\mathrm{SiMe}_{2}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.45(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}), 7.38-7.26$ ($8 \mathrm{H}, \mathrm{m}, m$-and p-SiPh and CPh), $\left.4.37(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})_{2}\right), 3.26$ ($1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $9.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}$), $3.17(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and 9.2, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and 16.3, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}$), $2.38\left(1 \mathrm{H}\right.$, dd, $J 5.9$ and 16.3, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 2.15-2.00$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.66(1 \mathrm{H}$, ddd, $J 4.3,6.1$ and 7.7 , CHSi), $0.98(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and 0.33 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 356\left(4 \%, \mathrm{M}^{+}\right), 341(45, \mathrm{M}-\mathrm{Me})$, 279 (50, M - Ph), $135\left(95, \mathrm{SiMe}_{2} \mathrm{Ph}\right)$ and 91 ($100, \mathrm{PhCH}_{2}$) (Found: $\mathrm{M}^{+}, 356.1810 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 356.1808$) (Found: C, 70.5; H, 7.9. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}$, 7.9%).

2-Trimethylsilylethyl ($\mathbf{3 R S}, 4 R S$)-5-benzyloxy-4-methyl-3dimethyl(phenyl)silylpentanoate 7

Dicyclohexylcarbodiimide ($3.50 \mathrm{~g}, 16.96 \mathrm{mmol}$) in dry dichloromethane ($7 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of the acid ($5.49 \mathrm{~g}, 15.42 \mathrm{mmol}$), 2-trimethylsilylethanol ($2.43 \mathrm{~cm}^{3}, 2.01 \mathrm{~g}, 16.96 \mathrm{mmol}$) and 4-dimethylaminopyridine $(100 \mathrm{mg}, 0.8 \mathrm{mmol})$ in dry dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon. The mixture was stirred at room temperature for 1.5 h , filtered through Celite, diluted with dichloromethane (400 cm^{3}), washed with dilute hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $2 \times 100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed ($\mathrm{SiO}_{2}, \mathrm{EtOAc}-$ hexane, $5: 95)$ to give the ester $(5.88 \mathrm{~g}, 84 \%) ; R_{f}(\mathrm{EtOAc}$-hexane,

20:80) 0.70; $v_{\text {max }}($ film $) / \mathrm{cm}^{1} 1730(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right), 1110$ (SiPh) and $835\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.50-7.46(2 \mathrm{H}$, $\mathrm{m}, o-\mathrm{SiPh}), 7.35-7.26(8 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{SiPh}$ and CPh), 4.35 (2 $\mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}$), 4.06-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}$), $3.24(1 \mathrm{H}, \mathrm{dd}, J$ 5.8 and $\left.9.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.13(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 9.2 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 2.40-2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.15-2.00(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}$), 1.66 (1 H , ddd, $J 4.0,6.3$ and $7.8, \mathrm{CHSi}$), $0.96(3 \mathrm{H}, \mathrm{d}, J$ 6.9. CMe), 0.95-0.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH} \mathrm{H}_{2}$), $0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 413$ $\left(40 \%, \mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{Me}\right.$), 351 ($25, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{Ph}$), 135 ($95, \mathrm{SiMe}_{2} \mathrm{Ph}$), $91\left(100, \mathrm{PhCH}_{2}\right)$ and $73\left(80, \mathrm{SiMe}_{3}\right)$ (Found: $\mathrm{C}, 68.5 ; \mathrm{H}, 8.7 . \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 68.4 ; \mathrm{H}, 8.8 \%$).

2-Trimethylsilylethyl (2RS,3SR,4E)-2-[(1SR,2SR)-1-dimethyl(phenyl)silyl-2-methyl-3-benzyloxypropan-1-yl]-3-hydroxyhex-4-enoate

Butyllithium ($1.42 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexanes; $10.44 \mathrm{~cm}^{3}, 14.83$ mmol) was added dropwise with stirring to diisopropylamine ($2.24 \mathrm{~cm}^{3}, 1.62 \mathrm{~g}, 16 \mathrm{mmol}$) in dry THF ($30 \mathrm{~cm}^{3}$) under argon at $-20^{\circ} \mathrm{C}$, the mixture stirred for 0.5 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. The ester $7(5.88 \mathrm{~g}, 12.89 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture stirred for 1 h at this temperature. Freshly distilled trans-but-2-enal ($2.24 \mathrm{~g}, 2.65$ $\left.\mathrm{cm}^{3}, 32 \mathrm{mmol}\right)$ was added dropwise at the same temperature. The solution was stirred for 3 h , quenched with saturated aqueous ammonium chloride ($40 \mathrm{~cm}^{3}$), allowed to warm and extracted with ether ($3 \times 100 \mathrm{~cm}^{3}$). The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (SiO_{2}, EtOAc-hexane, 5:95-10:90) to give the hydroxy ester $(6.51 \mathrm{~g}, 96 \%) ; R_{\mathrm{f}}(\mathrm{EtOAc}$-hexane, $20: 80)$ $0.59 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1730(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right)$, $1110(\mathrm{SiPh})$ and $835\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.59-7.45(2$ $\mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}), 7.36-7.26(8 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{SiPh}$ and CPh), 5.52 $(1 \mathrm{H}, \mathrm{dq}, J 15.3$ and $5.8, \mathrm{CH}=\mathrm{CHMe}), 5.42(1 \mathrm{H}, \mathrm{ddq}, J 7.1,15.3$ and 1.1, $\mathrm{CH}=\mathrm{CHMe}$), $4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.10-3.90(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHO}), 3.96-3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right), 3.25(1 \mathrm{H}, \mathrm{dd}, J 4.6$ and $\left.9.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.13\left(1 \mathrm{H}, \mathrm{t}, J 8.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.69(1 \mathrm{H}$, dd, $J 3.3$ and $8.4, \mathrm{CHC}=\mathrm{O}), 2.25-2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C} H \mathrm{Me}\right)$, $1.72(1 \mathrm{H}, \mathrm{t}, J 3.3, \mathrm{CHSi}), 1.62(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{C}=\mathrm{CMe}), 0.99(3 \mathrm{H}$, d, J6.8, $\left.\mathrm{CH}_{2} \mathrm{CMe}\right), 0.91-0.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 0.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.02(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}) (Found: C, 68.4; H, 8.9. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}_{2}$ requires C, 68.4; H, 8.8%).

(2RS,3SR,4E)-2-[(1SR,2SR)-1-Dimethyl(phenyl)silyl-2-methyl-3-benzyloxypropan-1-yl]-3-hydroxyhex-4-enoic acid 8

 Tetrabutylammonium fluoride ($1.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $40 \mathrm{~cm}^{3}$, 44 mmol) was added dropwise with stirring to the hydroxy ester $(6.51 \mathrm{~g}, 12.38 \mathrm{mmol})$ in dry THF ($100 \mathrm{~cm}^{3}$) under argon at room temperature. The solution was stirred for 3 h , quenched with ether ($250 \mathrm{~cm}^{3}$) and water $\left(250 \mathrm{~cm}^{3}\right.$), stirred for 5 min and extracted with ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The extract was washed with dilute hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 100 \mathrm{~cm}^{3}$) and brine ($100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the hydroxy acid ($5.22 \mathrm{~g}, 99 \%$) as a pale yellow oil, $R_{\mathrm{f}}\left(\right.$ EtOAc-hexane, 20:80) 0.06; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3500-2500$ ($\operatorname{acid} \mathrm{OH}$), $1715(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{SiMe}_{2}\right), 1110(\mathrm{SiPh})$ and 820 $\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.60-7.44(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh}), 7.37-$ $7.26(8 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{SiPh}$ and CPh$), 5.64(1 \mathrm{H}, \mathrm{dq}, J 15.3$ and $6.3, \mathrm{CH}=\mathrm{C} H \mathrm{Me}), 5.48(1 \mathrm{H}$, ddq, $J 6.9,15.3$ and 1.3 , $\mathrm{CH}=\mathrm{CHMe}), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CHO})$, $3.33\left(1 \mathrm{H}, \mathrm{dd}, J 6.2\right.$ and $\left.9.3, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $\left.9.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.81(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and $7.3, \mathrm{CHC}=\mathrm{O})$, $2.20-2.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 1.71(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and 3.7 , CHSi), $1.66(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{C}=\mathrm{CMe}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{CH}_{2} \mathrm{CMe}$) $0.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 393\left(70 \%, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}\right), 349$ (15 , $\mathrm{M}-\mathrm{Ph}), 331\left(80, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Ph}\right), 135\left(95, \mathrm{SiMe}_{2} \mathrm{Ph}\right)$ and 91 (100, PhCH_{2}) (Found: $\mathrm{M}^{+}-\mathrm{Ph}, 349.1838 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$ requires $M-\mathrm{Ph}, 349.1835)$.(2RS,3SR,4Z,6E)-(1-Benzyloxy-2-methylocta-4,6-dien-3-yl)dimethyl(phenyl)silane 9 and ($2 R S, 3 S R, 4 E, 6 E$)-(1-benzyloxy-2-methylocta-4,6-dien-3-yl)dimethyl(phenyl)silane
Benzenesulfonyl chloride ($3.5 \mathrm{~cm}^{3}, 5.0 \mathrm{~g}, 28.1 \mathrm{mmol}$) was added dropwise with stirring to the hydroxy acid $8(4.00 \mathrm{~g}, 9.39 \mathrm{mmol})$ in pyridine ($40 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under argon. The solution was left overnight in the refrigerator, quenched with ice water ($50 \mathrm{~cm}^{3}$) and extracted with ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The extract was washed with saturated aqueous sodium hydrogen carbonate solution ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a mixture of the β-lactone of $\mathbf{8}$ and the dienes in pyridine. This mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h under argon, diluted with ether $\left(200 \mathrm{~cm}^{3}\right)$, washed with dilute hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \times 50 \mathrm{~cm}^{3}$), saturated aqueous sodium hydrogen carbonate ($50 \mathrm{~cm}^{3}$) and brine ($50 \mathrm{~cm}^{3}$), dried (MgSO_{4}) and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexane, $\left.5: 95\right)$ to give an inseparable mixture of the dienes $(1.97 \mathrm{~g}, 58 \%)$ as a colourless oil. Spectroscopic data for diene 9 are recorded below.

(2RS,3SR,4Z,6E)-(1-Benzyloxy-2-methylocta-4,6-dien-3-yl)dimethyl(phenyl)silane 9

N-Phenylmaleimide ($8.0 \mathrm{mmol}, 1.45 \mathrm{~g}$) was heated with the dienes ($1.97 \mathrm{~g}, 5.41 \mathrm{mmol}$) in toluene $\left(50 \mathrm{~cm}^{3}\right)$ at $60^{\circ} \mathrm{C}$ for 72 h . The solvent was removed under reduced pressure and the residue chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-\right.$ hexane, $\left.5: 95\right)$ to give the pure diene $(1.42 \mathrm{~g}, 72 \%) ; R_{\mathrm{f}}(\mathrm{EtOAc}-$ hexane, $5: 95) 0.52$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1250\left(\mathrm{SiMe}_{2}\right), 1120(\mathrm{SiPh}), 990(\mathrm{CH}=\mathrm{CH})$ and $840\left(\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53-7.44(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SiPh})$, $7.37-7.26(8 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{SiPh}$ and CPh$), 6.19(1 \mathrm{H}, \mathrm{ddq}, J$ 12.4, 14.9 and $1.4, \mathrm{MeCH}=\mathrm{CHCH}=\mathrm{CH}$), $5.96(1 \mathrm{H}, \mathrm{t}, J 10.9$, $\mathrm{MeCH}=\mathrm{CHCH}=\mathrm{CH}), \quad 5.62(1 \mathrm{H}$, dq, $J 14.8$ and 6.8, $\mathrm{MeCH}=\mathrm{CHCH}=\mathrm{CH}), 5.14(1 \mathrm{H}, \mathrm{t}, J 11.4, \mathrm{MeCH}=\mathrm{CHCH}=\mathrm{CH})$, $4.36(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} 2), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J 4.2\right.$ and $\left.9.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right)$, $3.12\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and $\left.8.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.26(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $12.1, \mathrm{CHSi}), 2.00-1.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 1.73(3 \mathrm{H}$, dd, $J 1.3$ and $6.8, \mathrm{C}=\mathrm{CMe}), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{2} \mathrm{CMe}\right), 0.28(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 287(5 \%$, $\left.\mathrm{M}^{+}-\mathrm{Ph}\right), 135\left(100, \mathrm{SiMe}_{2} \mathrm{Ph}\right)$ and $91\left(60, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{C}, 78.9 ; \mathrm{H}, 8.9 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{OSi}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 8.9 \%$).
(2RS,7SR,8SR,3E,5E)-1-Benzyloxy-2,7,9-trimethyl-8-methoxy-deca-3,5-diene 10a, ($2 R S, 7 R S, 8 R S, 3 E, 5 E)$-1-benzyloxy-2,7,9-trimethyl-8-methoxydeca-3,5-diene $10 \mathrm{~b},(2 R S, 7 S R, 8 R S, 3 E, 5 E)$ -1-benzyloxy-2,7,9-trimethyl-8-methoxydeca-3,5-diene 10 c and $(2 R S, 7 R S, 8 S R, 3 E, 5 E)$-1-benzyloxy-2,7,9-trimethyl-8-methoxydeca-3,5-diene 10d
Boron trifluoride-diethyl ether ($0.96 \mathrm{~cm}^{3}, 1.11 \mathrm{~g}, 7.8 \mathrm{mmol}$) was added dropwise with stirring to the diene $9(1.42 \mathrm{~g}, 3.89 \mathrm{mmol})$ and the acetal $2(920 \mathrm{mg}, 7.8 \mathrm{mmol})$ in dry dichloromethane (25 cm^{3}) at $-78^{\circ} \mathrm{C}$ under argon. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h and at $-40^{\circ} \mathrm{C}$ for 2 h , quenched with water (15 cm^{3}), diluted with ether $\left(200 \mathrm{~cm}^{3}\right)$, washed with water $\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexane, $\left.5: 95\right)$ to give an inseparable mixture of the dienes ($1.21 \mathrm{~g}, 98 \%$); $R_{\mathrm{f}}($ EtOAc-hexane, $10: 90) 0.35 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1095(\mathrm{C}-\mathrm{O})$ and $990(\mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.26(5 \mathrm{H}, \mathrm{m}$, Ph), 6.12-5.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$), $5.67-5.45(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.37\left(1 \mathrm{H}, \mathrm{dd}, J 6.5\right.$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 2.66(1 \mathrm{H}$, dd, $J 5.0$ and $6.6, \mathrm{CHO}), 2.52$ (1 H , sept, $J 6.8, \mathrm{CH}_{2} \mathrm{C} H \mathrm{Me}$), $2.36(1 \mathrm{H}$, sext, $J 6.8, \mathrm{CHCHMe})$, $1.75(1 \mathrm{H}$, oct, $J 6.7, \mathrm{CHMe} 2), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{C}=\mathrm{CCHMe} e_{\mathrm{A}}\right)$, $1.03\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{C}=\mathrm{CCHMe} e_{\mathrm{B}}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(\mathrm{FAB}) 317(25 \%$, $\left.\mathbf{M}^{+}+\mathrm{H}\right), 315(50, \mathrm{M}-\mathrm{H})$ and $229(100, \mathrm{M}-\mathrm{MeOCHCHC}-$ Me_{2}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 317.2455 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $M+$ $\mathrm{H}, 317.2480$). The ratio of $\mathbf{1 0 a}+\mathbf{1 0 b}: \mathbf{1 0 c}+\mathbf{1 0 d}$ was determined to be $80: 20$ by integration of ${ }^{1} \mathrm{H}$ NMR peaks, with
distinguishable peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum from $10 \mathrm{c}+$ 10d at $\delta 2.61$ (dd).
cis-1-[(2RS)-1-Benzyloxypropan-2-yl]-4-[(2SR,3SR)-3-meth-oxy-4-methylpentan-2-yl]cyclohexa-2,5-diene, cis-1-[(2RS)-1-benzyloxypropan-2-yl]-4-[(2RS,3SR)-3-methoxy-4-methylpen-tan-2-yl]cyclohexa-2,5-diene, cis-1-[(2RS)-1-benzyloxypropan-2-yl]-4-[(2SR,3RS)-3-methoxy-4-methylpentan-2-yl]cyclohexa-2,5-diene and cis-1-[(2RS)-1-benzyloxypropan-2-yl]-4-[(2RS,-3SR)-3-methoxy-4-methylpentan-2-yl]cyclohexa-2,5-diene The dienes $10(1.15 \mathrm{~g}, 3.64 \mathrm{mmol})$ and 1 -nitro-2-phenylsulfonylethene ($1.00 \mathrm{~g}, 4.73 \mathrm{mmol}$) in toluene $\left(15 \mathrm{~cm}^{3}\right)$ were heated under argon at $100^{\circ} \mathrm{C}$ for 10 h and at $80^{\circ} \mathrm{C}$ overnight and the solvent evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexane, $\left.10: 90-20: 80\right)$ to give the Diels-Alder products $(1.54 \mathrm{~g}, 2.91 \mathrm{mmol})$ which were then heated under reflux under argon as a mixture with AIBN (95 $\mathrm{mg}, 0.58 \mathrm{mmol})$ and tributyltin hydride $\left(1.57 \mathrm{~cm}^{3}, 1.70 \mathrm{~g}, 5.82\right.$ $\mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) for 3 h . The solvent was evaporated under reduced pressure and the crude product chromatographed (SiO_{2}, hexane then EtOAc -hexane, 5:95) to give an inseparable mixture of the dienes $(837 \mathrm{mg}, 67 \%) ; R_{\mathrm{f}}(\mathrm{EtOAc}-$ hexane, $20: 80)$ $0.62 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1095(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-$ $7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.80-5.46(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=\mathrm{CH}), 4.50(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 3.44\left(1 \mathrm{H}\right.$, dd, $J 6.9$ and $\left.9.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.42(3 \mathrm{H}, \mathrm{s}$, OMe), $3.30\left(1 \mathrm{H}\right.$, dd, $J 7.2$ and 9.2, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}$), 3.00-2.75 (3 $\mathrm{H}, \mathrm{m}, \mathrm{CHO}$ and $\mathrm{CHC}=\mathrm{CCH}), 1.95(1 \mathrm{H}$, dsextet, $J 3.9$ and 6.9 , $\left.\mathrm{CH}_{2} \mathrm{CHMe}\right), 1.94-1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHMe}), 1.75-1.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H \mathrm{Me}_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}_{\mathrm{A}}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}_{\mathrm{B}}\right)$, $0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}_{\mathrm{C}}\right)$ and $0.86\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}_{\mathrm{D}}\right) ; m / z 91$ (100, $\mathrm{PhCH}_{2}{ }^{+}$) and 87 (85, MeOCHCHMe ${ }_{2}$) (Found: C, 80.5; $\mathrm{H}, 10.0 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7 ; \mathrm{H}, 10.0 \%$. The ratio of $2 S R, 3 S R+2 R S, 3 R S: 2 S R, 3 R S+2 S R, 3 R S$ diastereoisomers was determined to be $80: 20$ by integration of ${ }^{1} \mathrm{H}$ NMR peaks. Distinguishable peaks in ${ }^{1} \mathrm{H}$ NMR spectrum from $2 S R, 3 R S+2 S R, 3 R S$ diastereoisomers at $\delta 3.47$ (s), 1.01 (d) and 0.64 (d).

1-[(2RS)-1-Benzyloxypropan-2-yl]-4-[(2SR,3SR)-3-methoxy-4-methylpentan-2-yl]benzene, 1-[(2RS)-1-benzyloxypropan-2-yl]-4-[(2RS,3RS)-3-methoxy-4-methylpentan-2-yl]benzene, 1-[(2RS)-1-benzyloxypropan-2-yl]-4-[(2SR,3RS)-3-methoxy-4-methylpentan-2-yl]benzene and 1-[(2RS)-1-benzyloxypropan-

 2-yl]-4-[(2RS,3SR)-3-methoxy-4-methylpentan-2-yl]benzene Dichlorodicyanobenzoquinone (DDQ) ($531 \mathrm{mg}, 2.34 \mathrm{mmol}$) in benzene ($10 \mathrm{~cm}^{3}$) was added dropwise with stirring to the dienes $(800 \mathrm{mg}, 2.34 \mathrm{mmol})$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature under argon. The mixture was stirred for 30 min , filtered washing with dichloromethane $\left(400 \mathrm{~cm}^{3}\right)$, washed with saturated aqueous sodium hydrogen carbonate $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and water $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, EtOAc-hexane, 5:95) to give an inseparable mixture of the ethers $(789 \mathrm{mg}, 99 \%) ; \quad R_{\mathrm{f}}($ EtOAc-hexane, $5: 95) \quad 0.27$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1510(\mathrm{Ar})$ and $1095(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.35-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.13\left(4 \mathrm{H}, \mathrm{s}, \mathrm{R}_{2} \mathrm{ArH}\right), 4.49(2 \mathrm{H}$, $\mathrm{s}, \mathrm{PhCH} 2), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J 6.3\right.$ and $\left.9.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CMe}\right), 3.47(1 \mathrm{H}$, dd, $J 7.6$ and $\left.9.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CMe}\right), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.04(1 \mathrm{H}$, sext, $J 6.9, \mathrm{CH}_{2} \mathrm{CHMe}$), $2.94(1 \mathrm{H}, \mathrm{dd}, J 4.6$ and $7.1, \mathrm{CHO}), 2.85$ (1 H , quintet, $J 6.9, \mathrm{CHCHMe}$), $1.67-1.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right)$, $1.29\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{ArCMe}_{\mathrm{A}}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{ArCMe}_{\mathrm{B}}\right), 0.91$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.85\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$; $m / z 340\left(10 \%, \mathrm{M}^{+}\right), 297\left(65, \mathrm{M}-\mathrm{CHMe}_{2}\right), 91\left(35, \mathrm{PhCH}_{2}\right)$ and 87 ($100, \mathrm{MeOCHCHMe} 2$) (Found: $\mathbf{M}^{+}, 340.2395$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $M, 340.2402$) (Found: $\mathrm{C}, 81.1 ; \mathrm{H}, 9.5$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.1 ; \mathrm{H}, 9.5 \%$). The ratio of $2 S R, 3 S R+$ $2 R S, 3 R S: 2 S R, 3 R S+2 S R, 3 R S$ diastereoisomers was determined to be $80: 20$ by integration of ${ }^{1} \mathrm{H}$ NMR peaks. Distinguishable peaks in ${ }^{1} \mathrm{H}$ NMR spectrum from $2 S R, 3 R S+$ $2 S R, 3 R S$ diastereoisomers at $\delta 3.11(\mathrm{~s}), 1.69(\mathrm{~m})$ and $0.90(\mathrm{~d})$.1-[(2RS)-1-Hydroxypropan-2-yl]-4-[(2SR,3SR)-3-hydroxy-4-methylpentan-2-yl]benzene 11a, 1-[(2RS)-1-hydroxypropan-2-$\mathrm{yl}]-4-[(2 S R, 3 S R)$-3-hydroxy-4-methylpentan-2-yl] benzene 11b, 1-[(2RS)-1-hydroxypropan-2-yl]-4-[(2SR,3RS)-3-hydroxy-4-methylpentan-2-yl]benzene 11c and 1-[($2 R S$)-1-hydroxypropan-2-yl]-4-[(2RS,3SR)-3-hydroxy-4-methylpentan-2-yl]benzene 11d
Chlorotrimethylsilane ($0.11 \mathrm{~cm}^{3}, 92 \mathrm{mg}, 0.85 \mathrm{mmol}$) was added dropwise with stirring to the ethers ($97 \mathrm{mg}, 0.285 \mathrm{mmol}$) and sodium iodide ($127 \mathrm{mg}, 0.85 \mathrm{mmol}$) in acetonitrile $\left(3 \mathrm{~cm}^{3}\right)$ at room temperature under argon. The mixture was stirred overnight, quenched with water ($5 \mathrm{~cm}^{3}$), diluted with ether (70 cm^{3}), washed with aqueous sodium thiosulfate ($25 \%, 10 \mathrm{~cm}^{3}$) and brine $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (SiO_{2}, diisopropyl ether) to give the diols 11a +11 b ($32 \mathrm{mg}, 48 \%$); R_{f} (isopropyl ether) $0.17 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3380(\mathrm{OH})$ and 1510 (Ar); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.16(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 3.67(2 \mathrm{H}, \mathrm{d}, J$ $6.8, \mathrm{CH}_{2} \mathrm{O}$), $3.36(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{CHO}$), 2.92 (1 H , sextet, $J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{CHMe}\right), 2.88(1 \mathrm{H}$, quintet, $J 6.9, \mathrm{CHCHMe}), 1.59(1 \mathrm{H}$, octet, $J 6.5, \mathrm{C}_{2} \mathrm{Me}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArCMe}_{\mathrm{A}}\right), 1.25(3 \mathrm{H}, \mathrm{d}$, $\left.J 7.3, \mathrm{ArCMe}_{\mathrm{B}}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CM}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.90(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 143.5, 141.5, 127.9 , $127.6,81.2,68.7,42.2,42.0,30.3,19.9,17.6,17.0$ and $15.3 ; \mathrm{m} / \mathrm{z}$ $236\left(5 \%, \mathrm{M}^{+}\right)$, 164 ($90, \mathrm{M}-\mathrm{C}=\mathrm{OCHMe}_{2}$) and 146 ($65, \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{C}=\mathrm{OCHMe}_{2}$) (Found: M^{+}, 236.1778. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $M, 236.1776$); and the diols 11c $+11 \mathrm{~d}(9 \mathrm{mg}, 13 \%)$; R_{f} (isopropyl ether) $0.15 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3390(\mathrm{OH})$ and 1510 (Ar); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.21\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}_{\mathrm{A}}\right), 7.18(2 \mathrm{H}$, d, $J 8.5, \mathrm{ArH}_{\mathrm{B}}$), $3.68\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{2} \mathrm{O}\right), 3.39(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and 7.6, CHO), $2.92\left(1 \mathrm{H}\right.$, sextet, $\left.J 6.9, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.84(1 \mathrm{H}$, quintet, $J 7.2, \mathrm{CHCHMe}), 1.77(1 \mathrm{H}$, dseptet, $J 4.4$ and 6.8 , CHMe ${ }_{2}$), 1.25 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{ArCMe}_{\mathrm{A}}$), 1.23 ($3 \mathrm{H}, \mathrm{d}, J 7.1$, $\left.\mathrm{ArCMe}_{\mathrm{B}}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.92(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\left.\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.4,141.8,128.4,127.6$, $80.5,68.7,43.0,42.0,30.0,20.4,18.6,17.6$ and $15.4 ; m / z 236$ $\left(50 \%, \mathrm{M}^{+}\right), 164\left(30, \mathrm{M}-\mathrm{C}=\mathrm{OCHMe}_{2}\right)$ and $146(100, \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{C}=\mathrm{OCHMe}_{2}$) (Found: $\mathrm{M}^{+}, 236.1774 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $M, 236.1776$).

2-Trimethylsilylethyl hydrogen adipate

A mixture of adipic acid ($730 \mathrm{mg}, 5.0 \mathrm{mmol}$), toluene- p-sulfonic acid ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 2-trimethylsilylethanol (840 mg , 7.1 mmol) in toluene ($5 \mathrm{~cm}^{3}$) was refluxed for 2 h with continuous azeotropic removal of water in a Dean-Stark trap. The solvent was removed under reduced pressure and the residue was chromatographed ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$-hexane, $50: 50$) to give the ester ($400 \mathrm{mg}, 33 \%$); R_{f} (EtOAc-hexane, $50: 50$) 0.39 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3600-2500($ acid OH$), 1730$ and $1715(\mathrm{C}=\mathrm{O})$ and 1250 and $840\left(\mathrm{SiMe}_{3}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.18-4.11(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.41-2.26\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.66(4 \mathrm{H}$, quintet, J $\left.3.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.00-0.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Si}\right)$ and $0.03(9$ $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$) (Found: C, 53.6; H, 9.0. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}$ requires C , $53.6 ; \mathrm{H}, 9.0 \%$).

2-Trimethylsilylethyl (2RS)-2-\{4-[(2SR,3SR)-3-hydroxy-4-methylpentan-2-yl] phenyl $\}$ propyl adipate and 2 -trimethylsilyl (2RS)-2-\{4-[(2RS,3RS)-3-hydroxy-4-methylpentan-2-yl]phenyl propyl adipate

Dicyclohexylcarbodiimide ($33 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry dichloromethane ($1 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of the above acid ($34 \mathrm{mg}, 0.14 \mathrm{mmol}$), the diols $11 \mathrm{a}+$ 11 b ($33 \mathrm{mg}, 0.14 \mathrm{mmol}$), 4-dimethylaminopyridine ($20 \mathrm{mg}, 0.16$ mmol) and 4 -dimethylaminopyridine hydrochloride (22 mg , 0.14 mmol) in dry dichloromethane ($1 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under argon. The mixture was allowed to warm to room temperature, stirred for 4 h , filtered and the solvent evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, EtOAc-hexane, $20: 80$) to give the diesters ($53 \mathrm{mg}, 82 \%$); $R_{\mathrm{f}}\left(\right.$ EtOAc-hexane, 20:80) 0.30; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3520(\mathrm{OH})$,
$1730(\mathrm{C}=\mathrm{O}), 1510(\mathrm{Ar})$ and 1250 and $835\left(\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; CDCl_{3}) $7.17(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.18(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and 10.7 , $\left.\mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.17-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.08(1 \mathrm{H}, \mathrm{dd}$, $J 7.5$ and $\left.10.8, \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.36(1 \mathrm{H}, \mathrm{q}, J 5.5, \mathrm{CHO}), 3.05$ $\left(1 \mathrm{H}\right.$, sextet, $\left.J 7.0, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.88(1 \mathrm{H}$, quintet, $J 6.7$, $\mathrm{CHC} H \mathrm{Me}), 2.30-2.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.66-1.55(5 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{CH} \mathrm{Me}_{2}$), $1.38(1 \mathrm{H}, \mathrm{d}, J 4.7, \mathrm{OH})$, $1.25(6 \mathrm{H}, \mathrm{d}, J 7.0,2 \times \mathrm{ArCMe}), 1.00-0.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Si}\right)$, $0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$ (Found: C, 67.3; H, 9.6. $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 9.5 \%$).
(2RS)-2-\{4-[(2SR,3SR)-3-Hydroxy-4-methylpentan-2-yl]phenyl $\}$ propyl hydrogen adipate and ($2 R S$)-2-\{4-[(2RS,3RS)-3-hydroxy-4-methylpentan-2-yl]phenyl $\}$ propyl hydrogen adipate Tetrabutylammonium fluoride ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $0.3 \mathrm{~cm}^{3}$, 0.3 mmol) was added dropwise to a stirred solution of the diesters ($47 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dry THF ($1 \mathrm{~cm}^{3}$) under argon at room temperature. The resulting solution was stirred for 4 h , quenched with ether $\left(5 \mathrm{~cm}^{3}\right)$ and water $\left(5 \mathrm{~cm}^{3}\right)$, stirred for 5 min and extracted with ether $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. The extract was washed with dilute hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} 5 \mathrm{~cm}^{3}$) and brine (5 cm^{3}), dried (MgSO_{4}) and evaporated under reduced pressure to give the hydroxy acids ($37 \mathrm{mg}, 100 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3460$ $(\mathrm{OH}), 3400-2500(\operatorname{acid} \mathrm{OH}), 1730$ and $1715(\mathrm{C}=\mathrm{O})$ and 1510 (Ar); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.16(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.18(1 \mathrm{H}, \mathrm{dd}$, $J 7.2$ and $\left.10.8, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.12(1 \mathrm{H}$, dd, $J 6.9$ and 10.8 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.38(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{CHO}), 3.06(1 \mathrm{H}$, sextet, $J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{CHMe}\right), 2.92(1 \mathrm{H}$, quintet, $J 6.7, \mathrm{CHCHMe}), 2.34-2.24$ (4 $\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 1.68-1.56 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{C} H \mathrm{Me}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{ArCMe}_{\mathrm{A}}\right), 1.26(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.\mathrm{ArCMe}_{\mathrm{B}}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.92(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}$); m/z 365 (75, $\mathrm{M}^{+}+\mathrm{H}$) and 292 ($40, \mathrm{M}-$ COCHMe ${ }_{2}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 365.2326 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $M+\mathrm{H}, 365.2328)$.
(1RS,2RS,12SR)-2-Isopropyl-1,12-dimethyl-3,10-dioxa[12]-paracyclophane-4,9-dione 12a and ($1 R S, 2 R S, 12 R S$)-2-isoprop-yl-1,12-dimethyl-3,10-dioxa[12]paracyclophane-4,9-dione 12b The hydroxy acids ($18 \mathrm{mg}, 0.050 \mathrm{mmol}$) in freshly distilled ethanol-free chloroform $\left(0.5 \mathrm{~cm}^{3}\right)$ were added dropwise over 3 h to a stirred solution of dicyclohexylcarbodiimide ($23 \mathrm{mg}, 0.11$ mmol), 4-dimethylaminopyridine ($21 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 4 dimethylaminopyridine hydrochloride ($18 \mathrm{mg}, 0.11 \mathrm{mmol}$) in freshly distilled ethanol-free chloroform ($4 \mathrm{~cm}^{3}$) at reflux under argon. The mixture was allowed to cool to room temperature, stirred overnight, the solvent removed under reduced pressure, diluted with ether ($15 \mathrm{~cm}^{3}$), filtered and the solvent removed under reduced pressure. The residue was chromatographed ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$-hexane, $10: 90$) to give an inseparable mixture of the diones 12a and $\mathbf{1 2 b}(13 \mathrm{mg}, 76 \%)$ in a ratio of $74: 26$ (as determined by integration of GLC and ${ }^{1} \mathrm{H}$ NMR signals) as a white solid, mp $128-131{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}($ EtOAc-hexane, $10: 90) 0.34$; r.t. (GLC; $\left.60^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} / \mathrm{min}-200^{\circ} \mathrm{C} / \mathrm{min}\right) 19.9$ ($2 R S$ diast.) and 20.1 ($2 S R$ diast.); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.25-6.98[4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}(2 R S$ and $2 S R$ diast.)], $4.99[1$ $\mathrm{H}, \mathrm{dd}, J 2.9$ and 10.3, CHO ($2 R S$ diast.)], 4.91 [1 H , dd, $J 3.0$ and $10.3, \mathrm{CHO}(2 R S$ diast. $)], 4.56\left[1 \mathrm{H}, \mathrm{t}, J 11.1, \mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right.$ (2 ' $R S$ diast.)], $4.40\left[1 \mathrm{H}\right.$, dd, $J 5.0$ and 10.7, $\mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}(2 S R$ diast.)], $4.01\left[1 \mathrm{H}, \mathrm{dd}, J 4.9\right.$ and $11.1, \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}(2 R S$ diast.)], $3.81\left[1 \mathrm{H}, \mathrm{t}, J 11.1, \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}(2 S R\right.$ diast.) $], 3.20-$ $3.12\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right.$ and $\mathrm{CHCHMe}(2 R S$ and $2 S R$ diast.) $], 2.16-2.04\left[3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right.$ and $\mathrm{CHMe}_{2}(2 R S$ and $2 S R$ diast. $)], 1.96-1.88\left[2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}(2 R S\right.$ and $2 S R$ diast.)], 1.31 [$3 \mathrm{H}, \mathrm{d}, J 7.1, \operatorname{ArCMeCH}(2 S R$ diast.) $)$, $1.31[3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArCMeCH}(2 R S$ diast. $)], 1.25-1.05[4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ (2 RS and 2 SR diast.) $], 1.20[3 \mathrm{H}, \mathrm{d}, J 7.1$, $\operatorname{ArCMe} \mathrm{CH}_{2}\left(2 S R\right.$ diast.)], $1.31\left[3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArCMe} \mathrm{CH}_{2}\right.$ ($2 R S$ diast.)], 1.04 [$3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}(2 R S$ and $2 S R$ diast.) $], 0.86\left[3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}(2 S R\right.$ diast.)] and $0.86[3$
$\mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}(2 R S$ diast. $\left.)\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2 R S$ diast. 173.5, 172.9, 141.3, 141.1, 129.4, 128.9, 126.6, 124.4, 81.8, $67.1,38.7,38.3,35.3,34.0,30.1,26.0,24.7,20.0,19.5,18.8$ and 10.5. Distinguishable signals from $2 S R$ diast. at 173.1, 141.9, 130.1, 129.3, 126.4, 124.6, 82.0, 69.0, 38.6, 38.2, 35.2, 33.4, 25.6, 24.3, 20.0, 17.6 and $10.9 ; m / z(\mathrm{FAB}) 369\left(5 \%, \mathrm{M}^{+}+\mathrm{Na}\right)$ and 347 ($55, \mathrm{M}+\mathrm{H}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 347.2209 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 347.2222$).

Acknowledgements

We thank the SERC for a maintenance award (C. P. L.).

References

1 I. Fleming, G. R. Jones, N. D. Kindon, Y. Landais, C. P. Leslie, I. T. Morgan, S. Peukert and A. K. Sarkar, J. Chem. Soc., Perkin Trans. 1, 1996, preceding paper.

2 W. R. Roush and C. K. Wada, J. Am. Chem. Soc., 1994, 116, 2151.
3 H.-F. Chow and I. Fleming, Tetrahedron Lett., 1985, 26, 397.
4 R. A. N. C. Crump, I. Fleming, J. H. M. Hill, D. Parker, N. L. Reddy and D. Waterson, J. Chem. Soc., Perkin Trans. I, 1992, 3277.
5 J. M. Berry and L. D. Hall, Carbohydr. Res., 1976, 47, 307.
6 T. Iversen and D. R. Bundle, J. Chem. Soc., Chem. Commun., 1981, 1240.

7 I. Fleming and N. J. Lawrence, Tetrahedron Lett., 1990, 31, 3645; T. Harada, S. Imanaka, Y. Ohyama, Y. Matsuda and A. Oku, Tetrahedron Lett., 1992, 33, 5807; S. C. Archibald and I. Fleming, Tetrahedron Lett., 1993, 34, 2387.
8 I. Fleming, S. Gil, A. K. Sarkar and T. Schmidlin, J. Chem. Soc., Perkin Trans. I, 1992, 3351.
9 N. Ono, A. Kamimura and A. Kaji, Tetrahedron Lett., 1986, 27, 1595.

Paper 5/06837A
Received 16th October 1995
Accepted 22nd January 1996

[^0]: $\dagger J$ Values are given in Hz .
 \ddagger 'Ether' refers to diethyl ether.

